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Experiments with Sun 
Java Real-Time System 
—Part II 
 
M. Auguston, T. S. Cook, D. Drusinsky, J. B. Michael,  
T. W. Otani, and M. Shing 
 

 
 
Abstract 
 

This is our second report on the Sun Java RTS. In this report we describe 
the findings on RTS 2.0 beta release that includes the real-time garbage 
collector (RTGC). We performed a number of experiments to determine 
whether the availability of RTGC will result in a better software architec-
ture for  the Global Integrated Fire Control System (GIFC)—a component 
of the C2BMC element of the Ballistic Missile Defense System (BMDS).  
 
Our experiment shows that it is possible to use only the Real-Time Java 
threads that use the heap memory for the GIFC software. SUN RTJ 2.0 
gives programmers more control over the priority of the garbage 
collection. We developed a real-time monitor design pattern to support the 
implementation of time-constrained computations that use the heap 
memory, and a methodology to determine the RTS run-time parameters 
(thread priorities, memory usage, process load, and task deadlines) 
necessary for the timely execution of these time-constrained computations. 
 

 
 
1.0 Overview 

In our first report [COOK], we concluded that it is preferable to use only the Real-Time 
Java threads that use the heap memory and not the no-heap real-time threads (NHRTT) 
for the GIFC software, due to the difficulties in writing correct Java programs using the 
no-heap real-time threads. However, such architecture cannot be implemented by using 
RTS 1.0. Further experiments are needed to determine if the preferred architecture can be 
implemented with the RTS 2.0, which will give programmers more control over the 
priority of the garbage collection. RTS 2.0 alpha version was released in August, 2006 
and the beta version in December, 2006. RTGC is supported in the new version, and we 
performed experiments to explore viable software architectures for the GIFC software.  
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Although the alpha release RTS 2.0 has made a number of improvements over RTS 1.0, 
the RTGC falls short of our expectations and needs. The beta version (RTS 2.0 b31) was 
released in December, 2006. Our experiments indicated that critical improvements made 
in the beta version did meet our software requirements. As the alpha version is now 
obsolete, we will not describe the experiments we performed with the alpha release in 
this report. 
 
 
 
2.0 Software and Hardware Configuration 
 
In order to run the RTS 2.0 beta version, we are required to update our Solaris machine. 
The hardware is SunBlade 2500. The operating system is Solaris 10 (11/06) and the RTS 
2.0 version is b31 (12/06).  
 
 
3.0 RTS v2.0 Real-Time Garbage Collector 
 
The real-time garbage collector (RTGC) provided in Sun Java RTS 2.0 has made critical 
improvements over the previous versions. It is now fully concurrent, and it can be 
preempted by the application’s real-time threads with a higher priority. Unlike the 
previous versions, there is no stop-the-world phase where the execution of the garbage 
collection suspends application threads unless the memory is completely depleted. Even 
in such situation, the effect to the critical threads (those with a priority higher than the 
one for the RTGC) is minimal. By properly tuning the values for two runtime 
parameters—RTGCCriticalPriority and RTGCCriticalReservedBytes—we will be able to 
achieve the desired balance of deterministic behavior of the critical threads and an overall 
throughput of the application. 
 
The new RTGC has the characterictic of dynamically changing its priority to achieve the 
right balance between  the determinism of critical threads and the overall throughput. 
With the alpha release, we set a fixed priority to the RTGC and assign higher priorities to 
critical threads. This set up however did not prevent the RTGC to block critical threads. 
With the newer beta release, we specify the threshold instead of setting a specific priority 
to the RTGC. Any thread with a priority above this threshold is considered critical. The 
RTGC starts with the lowest priority for the real-time threads.  
 
In the following subsections, we describe the effect of the two runtime parameters in 
detail. These two parameters are new to the beta release. 
 
3.1 RTGCCriticalPriority 
 
The RTGCCriticalPriority runtime parameter is most significant in the RTS V2 release for 
ensuring the determinism of time-critical threads. A thread with the assigned priority 
higher than RTGCCriticalPriority is called the critical real-time thread. RTGC starts 
running at RTGCNormalPriority (whose default value is the minimum priority for the 
real-time threads). The auto-tuning mechanism attempts to start RTGC soon enough so 
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that the garbage collection completes before reaching the memory threshold 
(RTGCCriticalReservedBytes), which will result in bumping up the priority of RTGC to 
RTGCCriticalPriority. 

 
 

Figure 1. Java real-time thread classification  
 

  
3.2 RTGCCriticalReservedBytes 
 
To aid the RTGC in ensuring the deterministic behavior of all the time-critical threads, 
the programmer needs to specify the second runtime parameter 
RTGCCriticalReservedBytes (the default value is 0). When the free memory becomes 
less than the value set for RTBCCriticalReservedBytes, RTGC runs at 
RTGCCriticalPriority, using all CPU cycles not used by time-critical threads. This 
prevents all other threads (non-time-critical real-time threads and non-real-time threads) 
from allocating CPU cycles and memory, and caused them to be blocked. It is important 
to be aware that critical threads with a higher priority can still get blocked by the lower 
priority RTGC if there is not enough memory for the critical threads to run. In general, 
we want to set the RTGCCriticalReservedBytes just high enough to ensure that the 
critical threads do not get preempted by the RTGC due to lack of free memory. If 
RTGCCriticalReservedBytes is set too high, the RTGC will run more frequently, thereby 
preventing the lower priority threads from running. This will reduce the overall 
throughput. The important points to remember regarding the value for 
RTGCCriticalReservedBytes are as follows: 
 
•  RTGCCriticalReservedBytes too high --> lower throughput
•  RTGCCriticalReservedBytes too low --> determinism compromised

 
4.0 Experiments 
 
In this section, we present the main experiments we performed. As promised in our first 
technical report [COOK], we have repeated the experiments described there. In addition, 
we performed new experiments to further explore different software architectures that are 
suitable for the new RTGC. 

 
All of the experiments described in this report were run under RTJ 2.0 beta release. We 
set the value for RTGCCriticalReservedBytes to 0 for all the experiments we performed. 
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We set the value to 0 so we can investigate the ideal configuration for the GIFC that 
achieves the maximum throughput. The new RTGC performed in a satisfactory manner 
and has met our expectations. 
 
4.1 Experiments No 1 to No 4 
 
These are the experiments we performed and reported in our previous technical report 
[COOK]. We ran these experiments again using Java RTS 2.0 to verify that we do not 
encounter any peculiar behavior under the new RTS version. We did not observe any 
anomaly when we ran these previous experiments using Java RTS 2.0.  
 
In Experiment No. 1, a real-time thread, with the highest possible priority, creates a 
linked list of nodes. We confirmed that this thread does get preempted even if its priority 
is higher than the one for RTGC when the available memory is exhausted. Experiment 
No. 5 is an updated version of Experiment No. 1, which we describe in the next section. 
Experiments No. 2 and No. 3 used NoHeapRealtimeThread objects, and as such, they are 
somewhat moot under RTS 2.0 since our recommended software architecture does not 
use no-heap real-time threads.  
 
In Experiment No. 4, we used only regular real-time threads (i.e., instances of the 
RealtimeThread class) dividing them into nominal and stateless discriminators. If a 
stateless discriminator can finish its task within the designated deadline, the actual result 
is reported. If it cannot finish its task within the deadline, the nominal result is reported. 
We observed the expected behavior of getting more actual results when we increase the 
values for the deadlines. Experiment No. 7 we describe in this report is an improved 
version of Experiment No. 4. For more details on Experiments No. 1 to No. 4, please 
refer to our previous technical report [COOK]. 
   
4.2 Experiment No. 5: Interaction between RTGC and RealtimeThreads 
 
The purpose of this experiment is to check the thread priority relationship between the 
real-time threads (instances of RealTimeThread and its subclasses) and the real-time 
garbage collector (RTGC). We define a descendant of RealtimeThread named 
RTGC_Tester. A RTGC_Tester simulates real-time computation by creating a linked list 
of N nodes with each node having an array of 500 BigInteger objects, as shown in the 
following pseudo-code: 
 

List<Node> myList = new LinkedList<Node>(); 
Node node; 
             
for (int i = 0; i < N; i++) { 
 node = new Node(i); 
 myList.add(node);               
}  

 
By varying the values for N, we can study the impact of the real-time garbage collector to 
the running program when the garbage collection kicks in. 
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The main driver creates and runs a number (M) of RTGC_Tester objects, where the value 
for M is an input to the program. RTGC_Tester objects are executed in sequence, and we 
track the elapsed time of each object in completing its execution. The following is the 
pseudo-code: 

 
for (int i = 0; i < M; i++) { 
 
 myThread = new RTGC_Tester(...); 
 
 myThread.start(); 
 myThread.waitTillCompletion(): 
 
 elapsedTime[i] = myThread.getElapsedTime(); 
} 
 
for (int i = 0; i < M; i++) {  
 System.out.println("Elapsed Time " + elapsedTime[i]); 
} 

 
As more and more RTGC_Tester objects are executed, memory is consumed, and 
depending of the values of M and N, garbage collection would take place. We want to see 
how the real-time garbage collection would affect the execution of RTGC_Tester objects. 
We ran the test driver in two ways. In the first way, we set the priority of RTGC_Tester 
objects to the highest value as follows: 
 

myThread =  
    new RTGC_Tester( 
 new PriorityParemeters(PriorityScheduler.instance(),  
                                   getMaxPriority()),  

null); 

And in the second way, we set their priority to the lowest possible value: 
 

myThread =  
    new RTGC_Tester( 
  new PriorityParemeters(PriorityScheduler.instance(),  
                                   getMinPriority()),  

   null); 
 

We set the RTGCNormalPriority to 40 and the RTGCCriticalReservedBytes to 0. In 
doing so, the RTGC will not block the RTGC_Tester objects with the highest priority as 
long as there is free memory in the heap, but will preempt the RTGC_Tester objects with 
the lowest priority periodically to reclaim the memory in the heap. 
 
It is important to notice that there is exactly one RTGC_Tester object running at any 
single instance of time. Whether this object has a priority higher than the one for the real-
time garbage collector becomes irrelevant when the free memory is completedly 
exhausted. When there is no more free memory, the garbage collector will preempt any 
real-time thread (regardless of their priority) to reclaim memory. We observed this 
behavior is our test runs. The priority assigned to the RTGC_Tester objects is irrelevant 
when the free memory is exhausted. Notice the two tables display the similar results. 
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Table 1. Experiment 5 Test Results with Max priority RTGC_Tester 
 

M (repeat 
count) 

No of times 
GC 

occurred 

No of 
spikes in 
elapsed 

time 

Elapsed time 
of the 

interrupted 
RTGC_Tester

Comment 

100 0 0 -- Elapsed time for the 
uninterrupeted 
RTGC_Tester is 
approximately 3 ms. 

200 1 1 143 ms  
300 1 1 144 ms  
500 3 3 151 ms 

141 ms 
141 ms 

 

1000 6 6 174 ms 
142 ms 
138 ms 
139 ms 
137 ms 
146 ms 

 

 
Table 2. Experiment 5 Test Results with Min priority RTGC_Tester 

 
M (repeat 

count) 
No of times 

GC 
occurred 

No of 
spikes in 
elapsed 

time 

Elapsed time 
of the 

interrupted 
RTGC_Tester

Comment 

100 0 0 -- Elapsed time for the 
uninterrupeted 
RTGC_Tester is 
approximately 3 ms. 

200 1 1 144 ms  
300 1 1 144 ms  
500 3 3 144 ms 

144 ms 
140 ms 

 

1000 6 6 145 ms 
141 ms 
143 ms 
142 ms 
140 ms 
140 ms 
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4.3 Experiment No. 6: Mixture of Critical and Non-Criticial Realtime Threads 
 
Experiment No. 5 is an extreme case where the program includes one type (either all 
critical or all non-critical) of running threads. The sole purpose of Experiment No. 5 was 
to verify the behavior of the RTGC interrupting any thread when the memory is 
exhausted. 
 
In this experiment, we test a more realistic configuration where a mixture of critical and 
non-critical threads coexist in a running program. This configuration is closer to our 
proposed architecture of using high-priority Nominal and low-priority Stateless 
discriminators. For this experiment, we define two real-time thread classes: 
RTGC_Nominal and RTGC_Stateless. An instance of the RTGC_Nominal class 
simulates a Nominal object by spending time doing computation without allocating any 
memory in heap (uses only a local variable). An instance of the RTGC_Stateless class 
simulates a Stateless object by allocating a linked list of 2000 nodes with each node 
holding 500 BigInteger objects. 
 
The main class of the experiment will create N RTGC_Nominal and N RTGC_Stateless 
threads in the initialization phase (where N is an input to the program) and then run the 
2N threads concurrently. The RTGC_Nominal threads are run in the highest priority and 
the RTGC_Stateless in the lowest real-time thread priority. The priority of the RTGC is 
set to 40 as a runtime option. For each thread, we track its elapsed time.  
 
Because the RTGC_Stateless threads allocate heap memory, we expect them to be 
interrupted and paused to wait for the garbage collector to complete its work, while the 
RTGC_Nominal threads sees no interruptions. The test runs confirmed our expectation. 
The following table shows some of the test results. 
 

Table 3. Experiment 6 Test Results 
 

N  
(repeat 
count) 

No of times 
GC 

occurred 

Minimum and Maximum 
elapsed times of 

RTGC_Nominal threads 

Minimum and Maximum 
elapsed times of 

RTGC_Stateless Threads 
100 7 0 ms, 

202417 ns 
0 ms, 

311083 ns 
15 ms, 

589583 ns
693 ms, 

565833 ns 
200 17 0 ms, 

202333 ns 
0 ms, 

332916 ns 
16 ms, 

131334 ns
830 ms, 

300750 ns 
300 25 0 ms, 

202750 ns 
0 ms, 

327750 ns 
15 ms, 

481501 ns
886 ms, 

804750 ns 
500 43 0 ms, 

202500 ns 
0 ms, 

330583 ns 
15 ms, 

264834 ns
937 ms, 
5332 ns 

1000 90 0 ms, 
201000 ns 

0 ms, 
455500 ns 

15 ms, 
188917 ns

882 ms, 
228249 ns 
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4.4 Experiment No 7: Modified Experiment No 4 
 
As stated in the first report [COOK], working with NHRTT is not easy. There are many 
pitfalls and hurdles software engineers and programmers must jump. Our goal with the 
new RTGC is to implement all-heap real-time thread architecture. In this All-Heap 
Design, instead of running the Discriminator as NHRTT, we will run it as a regular RTT, 
but assign a scheduling priority higher than RTGCCriticalPriority.  
 
In Experiment No 4, we used a deadline miss handler to process the timeout situation in 
which the DiscriminatorStateless is not able to compute the result within the allocated 
time period (Figure 2). Because the deadline miss handler is associated to the 
DiscriminatorStateless that has a priority lower than the one for the RTGC, there is a 
possibillity of RTGC interrupting/delaying the asyncronous transfer of control to the 
deadline miss handler. 
 

 
 
 

Figure 2. Sequence diagram of the original design  
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To avoid this undesirable possibility, one member of the Sun Java RTS project team 
suggested an alternative architecture to associate the deadline miss handler to a higher 
priority DiscriminatorNominal.  To do this, we need to use a timer, specifically, a 
OneShotTimer. We designate the deadline to this OneShotTimer object by specifying a 
RelativeTime such as 20ms. When the set time is up, the OneShotTimer will trigger an 
event that allows the deadline handler to process the missed deadline. 
 
4.4.1 Software Architecture 
 
We divide real-time threads into the two groups: those with a priority higher and those 
lower than the one for the RTGC. We call them the critical and noncritical threads, 
respectively. The key aspect of this architecture is that only the noncritical threads 
allocate memory in the heap. In our particular case, only the Stateless instances will 
allocate the heap memory. This architecture ensures that the critical threads will not get 
preempted by the RTGC, thus guaranteeing the determinism of the critical threads. 
 
 

RTGC
CriticalPriority

Simulator
Control

Discriminator
OneShotTimer Deadline

Handler

Discriminator

Nominal

Stateless

 
Figure 3. Collaboration diagram of the revised design  

 
 

4.4.2 SimulatorControl 
 
The main controller of the program creates N tracks, and for each track created, an 
instance of DiscriminatorNominal is assigned to it for discrimination. Each 
DiscriminatorNominal instantiates an instance of low priority DiscriminatorStateless to 
do the actual work of discrimination using the heap memory, and a high priority 
OneShotTimer to monitor the time taken by the DiscriminatorStateless thread.  
 
SimulatorControl is a RealtimeThread and its run method is defined as follows: 
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public void run( ) { 
 
for (int i = 0; i < N; i++) { 

  Track node = new Track(i); 
   
  DiscriminatorNominal disc  
   = new DiscriminatorNominal(this, node); 

 
  nominal[i] = disc; 
   
  dicriminatorCnt++; 
 }  

 
 for (int i = 0; i < N) { 
  nominal[i].start(); 
  
  /* A */ 
  /* Place delay here */ 
 } 
}  
 

We are using an array to keep track of nominal discriminators. Every index position of 
this array is a non-null value as it points to an instance of the DiscriminatorNominal 
class. When the DiscriminatorNominal finishes its computation, it calls the Simulator-
Control’s method (named workDone) to report the completion of discriminaton. This 
results in setting the corresponding index position to null, thereby turning the used heap 
memory into garbage.   
 
At Point A in the code, after a nominal discriminator is started, we can place a time delay. 
Placing no delay means the program will run all nominal discriminators simultaneously. 
This could lead to an OutOfMemory exception when N becomes larger than a certain 
threshold. The reason is because the priority of SimulatorControl is higher than the one 
for RTGC. As it creates and starts more and more nominal discriminators, more and more 
memory gets consumed but there is no garbage to collect because there is no index 
position in the array that is set to null.  In other words, from our experiment, the nominal 
discriminators never have a chance to call the workDone( ) method. 
 
If we place certain amount of delay at Point A in the code, then it becomes possible for 
the nominal discriminators to call the SimulatorControl’s method (named workDone) to 
turn themselves and memory allocated by the corespondingstateless discriminators into 
garbage for the RTGC to collect.   
 
4.4.3 DiscriminatorNominal 
 
A DiscriminatorNominal object performs the discrimination operation on a given track. 
The actual work of discrimination is done by DiscriminatorStateless. The deadline is set 
by designating the time duration (RelativeTime that specifies the time duration such as 2 
ms) using a OneShotTimer. When the time is up, its associated asynchronous event 
handler DiscriminatorDeadlineHandler is used to report back to DiscriminatorNominal. 
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DiscriminatorNominal can get the result in two ways. The first is the full result, that is, 
the actual computation result received from DiscriminatorStateless. In this case, the 
OneShotTimer object is killed. The second is the nominal result. This result is used when 
the timeout occurs. In this case, the associated DiscriminatorStateless is killed. 
 
4.4.4 DiscriminatorStateless 
 
An instance of this class does the actual work of discrimination by interacting with its 
associated Track object. In this program, we simulate the discrimination activity by 
calling a method of the Track object. This stub method will go through a “dummy” 
computation loop and consume 40,000 bytes of heap memory. When the computation is 
complete, it calls its controlling DiscriminatorNominal to report the result. 
 
4.4.5 DiscriminatorTimeoutHandler 
 
When the time duration set for the OneShotTimer is up, it calls its controlling 
DiscriminatorNominal to report that the nominal result must be used. 
 
4.4.6 Test Results 
 
We ran tests by varying the number of discriminators, deadlines, and the pause time 
between the creation of discriminators (Point A in the code). The first set of tests is run 
by placing no delays (delay time = 0).  The test results are shown in Table 4.  

 
Table 4: No delay between the creation of discriminators 

 
Deadline 

(ms) 
N  

(# of discriminators) 
Result 

(# of timeouts) 
20 100 79 ~ 100 
 200 200 
 500 500 
 1000 1000 
 1500 OutOfMemory 

50 100 28 ~ 96 
 200 142 ~ 200 
 500 500 
 1000 1000 
 1500 OutOfMemory 

100 100 0 ~ 60 
 200 35 ~ 200 
 500 500 
 1000 1000 
 1500 OutOfMemory 

500 100 0 
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 200 0 
 500 184 ~ 434 
 1000 998 ~ 1000 
 1500 OutOfMemory 

 
 
As expected, the table shows that as we increase the deadline, the number of timeouts 
decreases. When we increase the deadline the discriminators have more time to complete 
its computation. This will result in having a few number of timeouts for the same number 
of discriminators. For example, with 200 discriminators, we see anywhere from 35 to 200 
occurences of timeouts when the deadline is set to 100 ms. When the deadline is 
increased to 500 ms, then we we see no timeouts at all. 
 
In the second set of tests, we place a delay at Point A in the code. By placing a delay, we 
will be able run a larger number of discriminators without getting an out of memory 
exception because the RTGC will be able to reclaim garbage. With no delay, the run 
method of SimulatorControl never gets interrupted, and there will be no null pointers in 
the nominal array. With a delay, the run method can get interrupted and the nominal 
discriminators get a chance to call the workDone method of SimulatorControl. The 
workDone method will reset the content of the nominal array, at the index position that 
corresponds to the calling nominal discriminator, to null. This will result in the RTGC 
reclaiming memory allocated by the corresponding stateless discriminator. As heap 
memory spaces are recycled, we can avoid the OutOfMemory exceptions we’ve seen in 
the first set of tests. 
 

Table 5: Delay of 5 ms between the creation of discriminators 
 

Deadline 
(ms) 

N  
(# of discriminators) 

Result 
(# of timeouts) 

20 100 0 
 200 0 
 500 0 
 1000 0 
 1500 OutOfMemory 

50 100 0 
 200 0 
 500 0 
 1000 0 
 1500 OutOfMemory 

500 100 0 
 200 0 
 500 0 
 1000 0 
 1500 OutOfMemory 
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Table 5 shows the results of test runs when the delay time is set to 5 ms . When the 
number of discriminators (N) is 1500, we still get an OutOfMemory exception regardless 
the values for the deadline. This means the 5 ms delay time is simply not long enough for 
the run method to be interrupted and the nominal discriminator to get a chance to call the 
workDone method. If we set the deadline to a larger number, such as 500 ms, the RTGC 
does preempt SimulatorControl, but since the workDone method is never executed, 
there’s no garbage the RTGC can collect.   

 
Table 6 shows the results of test runs when the delay time is set to 50 ms, which gives 
enough time the the RTGC to reclaim the heap memory in between successive runs of the 
DiscriminatorNominal threads 

 
Table 6: Delay of 50 ms between the creation of discriminators 

 
Deadline 

(ms) 
N  

(# of discriminators) 
Result 

(# of timeouts) 
20 100 0 
 200 0 
 500 0 
 1000 0 
 1500 1 ~ 5 (1 GC) 

50 100 0 
 200 0 
 500 0 
 1000 0 
 1500 0 (1 GC) 

500 100 0 
 200 0 
 500 0 
 1000 0 
 1500 0 (1 GC) 

 
 
 

5.0 Conclusion and Recommendation 
 
With the most recent Java RTS 2.0, we can assign a priority to the RTGC as a runtime 
option. A real-time thread with a priority higher than the RTGC priority will not get 
preempted by the RTGC unless the heap memory is completely exhausted. This 
architecture allows the programmers to divide the workload into critical and noncritical 
threads, with the former having a higher and the latter a lower priority than the RTGC 
priority.   
 



 14

We repeated Experiments No. 1 to No. 4 that are reported in our previous Technical 
Report with the Java RTS 2.0 to verify the new system is backward compatible. We 
performed Experiments No. 5 and No. 6 to confirm our understanding of how the new 
system works is correct. Finally, we carried out Experiment No. 7 to test the feasibility of 
our proposed design pattern for the GIFC. 
 
The results of Experiment No. 7 confirms the viability of our proposed design pattern. 
The design pattern calls for two types of real-time threads—nominal and stateless—to 
carry out mission-critical tasks. The nominal threads run at a priority higher and the 
stateless threads lower than the one for the RTGC, respectively. Only the stateless threads 
allocate heap memory. The key aspect in our design pattern is the use of timeout handler. 
The nominal delegate the actual computation task to the stateless. If the stateless 
completes the designated task before the set deadline, it returns the result to the nominal. 
If the deadline is past without the stateless completing the task, the timeout handler 
notifies the nominal. In this case, the nominal will perform a table lookup for a value to 
be used in lieu of the real result. 
 
The goal, when implementing our proposed design for the actual program, is to set the 
necessary parameters so the number of timeouts (T) is minimized. In an ideal situation, it 
is 0, that is, no timeouts occur. We observe three parameters are important, as 
demonstrated in Experiment No. 5. They are the pause time (P) between the creations of 
nominals, the deadline (D) for the stateless to complete the designated task, and the 
memory usage (M) of the stateless.  
 
If we set P = 0, then the value of M determines the total number of nominals (N) and their 
corresponding stateless and timeout handlers that can be executed concurrently without 
causing an OutOfMemory exception. (In Experiment No. 7, we used M = 40,000 bytes.) 
By increasing the value for D, we can decrease the number of timeouts to reach the point 
where T would be 0. Table 1, for example, shows that by setting D = 500, we can run 200 
discriminators without any occurence of timeouts. 
 
In a typical real-time application, the upperbound for the value of D is given as a system 
requirement. That is, we want a guaranteed performance of completing a critical task in 
no more than D time units. If D is given, we can attain T = 0 by determining the 
appropriate values for P and M. If the upperbound for M is known, then we can increase 
the value of P until T becomes 0. If the upperbound for P is known, then we can 
determine the maximum value for M while maintaining T = 0. 
 
To apply our proposed design pattern for the GIFC, we need an upperbound on the 
memory requirements for the task of discriminating and correlating a track. This gives us 
the value for M. The interarrival time of objects to track gives us the value for P. From 
these two values, we can guarantee no timeouts, T = 0, by determining suitable values for 
D and N. The values for D and N are proportional. If the deadline is longer, then we can 
ran a larger number of discriminators. If we want to run a larger number of 
discriminators, then we need to increase the deadline to maintain T = 0. 
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Table 7 summarizes the concepts. The “You Can/Need To” column specifies what the 
system designer needs to or can do in order to achieve no timeouts (T = 0) for the given 
parameters listed in the Given column.

 
 

Table 7: Methods to determine 100% completion of the stateless computation  
To Achieve T = 0 
Given the values for  You Can/Need To 

P and D Determine the maximum value for M. If a discriminator 
requires less than this value, then we can achieve T = 0. 
If a dis criminator requires more, then we need to adjust 
the values of P or D to get T = 0. 

P and M Determine the threshold value for D. If this value is not 
acceptable, then we need to increase the value for P. 

D and M Determine the threshold value for P. Any value below 
this threshold will increase the occurences of timeouts. 

T - timeouts; P - pause time (interarrival time); M - memory requirements 
per discriminator; D - deadline 
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